, ,

Click for Video – Reconstructing Philae’s flight

12 November 2015

One year since Philae made its historic landing on a comet, mission teams remain hopeful for renewed contact with the lander, while also looking ahead to next year’s grand finale: making a controlled impact of the Rosetta orbiter on the comet.

Rosetta arrived at Comet 67P/Churyumov–Gerasimenko on 6 August 2014, and after an initial survey and selection of a landing site, Philae was delivered to the surface on 12 November.

After touching down in the Agilkia region as planned, Philae did not secure itself to the comet, and it bounced to a new location in Abydos. Its flight across the surface is depicted in a new animation, using data collected by Rosetta and Philae to reconstruct the lander’s rotation and attitude.

In the year since landing, a thorough analysis has also now been performed on why Philae bounced.

There were three methods to secure it after landing: ice screws, harpoons and a small thruster. The ice screws were designed with relatively soft material in mind, but Agilkia turned out to be very hard and they did not penetrate the surface.

The harpoons were capable of working in both softer and harder material. They were supposed to fire on contact and lock Philae to the surface, while a thruster on top of the lander was meant to push it down to counteract the recoil from the harpoon.

Attempts to arm the thruster the night before failed: it is thought that a seal did not open, although a sensor failure cannot be excluded.

Then, on landing, the harpoons themselves did not fire. “It seems that the problem was either with the four ‘bridge wires’ taking current to ignite the explosive that triggers the harpoons, or the explosive itself, which may have degraded over time,” explains Stephan Ulamec, Philae lander manager at the DLR German Aerospace Center.

“In any case, if we can regain contact with Philae, we might consider an attempt to retry the firing.”

The reason is scientific: the harpoons contain sensors that could measure the temperature below the surface.

Despite the unplanned bouncing, Philae completed 80% of its planned first science sequence before falling into hibernation in the early hours of 15 November when the primary battery was exhausted. There was not enough sunlight in Philae’s final location at Abydos to charge the secondary batteries and continue science measurements.

The hope was that as the comet moved nearer to the Sun, heading towards closest approach in August, there would be enough energy to reactivate Philae. Indeed, contact was made with the lander on 13 June but only eight intermittent contacts were made up to 9 July.

The problem was that the increasing sunlight also led to increased activity on the comet, forcing Rosetta to retreat to several hundred kilometres for safety, well out of range with Philae.

However, over the past few weeks, with the comet’s activity now subsiding, Rosetta has started to approach again. This week it reached 200 km, the limit for making good contact with Philae, and today it dips to within 170 km.

(Click on link and read entire article for more of this fascinating story.)